
Introduction to Programming

Writing an Arduino Program

 It’s an open-source electronics prototyping platform.

What is an Arduino?

Say,
what!?

 Open-source: “Resources that can be used, redistributed,
or rewritten free of charge. (Often software or
hardware.)”

 Electronics: “Technology which makes the use of
controlled motion of electrons through different media.”

 Prototype: “An original form that can serve as a basis or
standard for other things”

 Platform: “Hardware architecture with software
framework on which other software can run.”

Let’s Define It Word By Word…

Verbiage from Jody Culkin, Arduino comic

The Arduino contains a microchip.

 A microchip is a very small computer that you can
program.

 You can attach sensors to it, to measure conditions

 Such as the amount of light in a room

 It can control how other objects react to those
conditions

 Room gets dark, a light turns on

How does it work?

 Power In – where the
Arduino is powered
(battery or wall charger)

 USB - allows you to
connect Arduino to
computer to program it

 Reset – restarts the
program running on the
board, same as
unplugging and plugging
it back in.

 Analog & Digital – covered
later

Hardware Parts of the Arduino

The weather information device is powered by an
Arduino.

If we try to “reverse engineer” the weather device, we
need to figure out what method is used by the device to
report the temperature and light conditions.

How does this relate to the weather
information system device?

Basic Programming Concepts

A program is a set of instructions given to a
microcontroller or computer to carry out a process.

Code is lingo used to describe a program.

An algorithm is an ordered set of steps required to
complete task(s) or solve problem(s). Algorithms set
the basis for a program. Though you likely use
algorithms daily – brushing teeth, walking, putting
deodorant on, making a sandwich, etc.

What is a program? Code? Algorithm?

In programming, variables are used to refer to and hold a specific
value. The value can vary – hence variable.

Just like algebra variables with added rules:
 Can be named whatever you like,
 Can’t have spaces,
 Are case and spelling sensitive,
 When performing calculations the variable name that will hold the

answer goes on the left of the =
 Temp_F = Temp_C *(9.0/5.0) + 32.0;
 Note: Temp_C is a variable that already has a value, Temp_F will get its

value from the equation above.

What are Variables?

Variables can be thought of as
storage boxes

Let’s watch a video to better conceptualize what role
variables play in programming and how they work

https://www.youtube.com/watch?v=T6OMJIIsEFE

https://www.youtube.com/watch?v=T6OMJIIsEFE
https://www.youtube.com/watch?v=T6OMJIIsEFE

Before engineers code, they develop flow charts to outline the
algorithm required to solve a problem & they use variables to hold
values.

 Start or stop: begin or end an algorithm

 Input or Output: inputs to or outputs from the microcontroller
(i.e. temp. sensor, LCD screen)

 Process: Calculations on inputs (i.e. Fifteen = 10 + 5)

 Decision: One example is an “if statement” – decides if a
statement is true, usually followed by a process or output if the
condition is true.

 Example:

 if (armpits = stinky)

 {

 take shower now;

 }

Logic Flow Chart – Basic Shapes

Input or
Output

Process

Decision

Start or Stop

 True

 False

armpits is a variable!

Input / Output

Referenced from the perspective of the microcontroller (Arduino).

Input is a signal / information

going into the Arduino.

Output is any signal exiting the

Arduino.

What are some examples of Inputs & Outputs?

Examples: Buttons Switches, Light
Sensors, Flex Sensors, Humidity
Sensors, Temperature Sensors…

Examples: LCD screen, LEDs,
motors, a buzzer, relay

Just as a flow chart flows in the direction of the arrows, programs
have a “flow.”

The computer or microcontroller complete the steps programmed
or coded, line by line.
 For instance to make the LCD screen say: “Temp F” we would

write:
 lcd.print("Temp F "); \\The quotes indicate a string of text

 Before going to the next line, the microcontroller prints “Temp
F” on the screen.

 On the next lines we can tell it to go to a specific location on the
LCD screen (6,0) and output the converted temperature value.

 lcd.setCursor(6, 0);
 lcd.print(tempF);

Program Flow

Since the computer will do exactly what you tell it to, as
the programmer, it’s important not to skip steps.

 Imagine you were telling someone on the phone
 how to make a BLT, but you didn’t tell them to
 cut the tomato or lettuce first and they took
 your directions literally. What would happen?

Program Flow Continued

The computer or microcontroller will process each command one
at a time and in the order that you tell it to.

But, each step happens so fast that we couldn’t detect this.

For instance, if we wanted to print, “Temp F” on the LCD screen
and have it stay there when we insert the temperature output
between the Temp and F, we could do that.

First, we tell the computer to print “Temp F” with spaces for the
temperature – then we tell the computer to go to the position on
the LCD with space and print the temperature reading.

Order of Code

The following model is the most basic programming method; it helps
ensure that steps are not missed.
 Declare or Initialize Variables, then
 I-P-O:

 Sometimes, the flow repeats in a “feedback loop” where the
Output continues to feed the Input.

Basic Programming Flow Model

Input Process Output

 Class participation exercise - create a flowchart for
purchasing a soda from a vending machine.

 From your perspective

 From the vending machine’s perspective

Flow Charting - Tying it Together

Flowchart for Soda Vending
(Your Perspective)

Start Soda_Vend

Output
Money

Determine
Flavor_Pref

Output
Flavor_Pref

Retrieve Soda &
Change

End Soda_Vend

Flowchart for Soda Vending
(Machine’s Perspective)

Start Soda_VenM

Input
Money &

Soda_Pref

Output
Soda &
Change

End Soda_VenM

Money>=
Soda_Val

Yes

Output
“Insert
More

Money”

No

After a flowchart, many beginner programmers find it
helpful to write pseudocode.

Psuedo: meaning informal, not proper.

In psudocode, you write generally what you will write in
your code to bridge between your flowchart / algorithm
& your code.

“Psuedocode”

Additional Programming
Concepts

Whenever you declare or define a variable you must tell the microcontroller how
to handle the data you assign to the variable. Here are common data types:

 Integer (int) – whole numbers, just like integers in you learned about in your
math class

 Float (float) – numbers with high accuracy including decimal places

 Character (char) – letters

 String (str) – a string of letters, usually defined using quotation marks

When performing operations (for the Arduino) on values that have the float data
type for an Arduino, you must use decimals to keep it as a “float” data type. For
example:

Temp_C = (TempRead – 0.5) / 1024 -> Temp_C will be an integer

Temp_C = (TempRead – 0.5) / 1024.0 -> Temp_C will remain float

Variables are Categorized by Data Type so the
Microcontroller “Knows” How to Handle

Them

Analog / Digital

When dealing with input (sensors) and output (LCD) we need
to know whether they are analog or digital.

Digital signals are either ON or OFF or HIGH or LOW. This
type of input can also be called – discrete.

Analog signals are anything that can be a full range of values.

Can you think of some examples for each?

What type would the light sensor & temperature sensor be
considered?

When you look into reverse engineering something it’s
important to know information about the “hardware” –
in this case sensors.

The temperature sensor requires two steps to convert
the output voltage into a temperature.

The photocell / light sensor requires knowledge of the
maximum output as well.

Sensor Output & Conversion

Coding / Programming the
Microcontroller (Arduino)

It’s the program (environment) on the computer that
allows you to develop, compile (check) and upload
(integrate) your program or sketch to the hardware
(Arduino).

What is an Integrated Development
Environment (IDE)?

Syntax is the way that words are put together in a language.
To program, we need to be sure to follow the “grammar”
rules for the Arduino “language.”

Here are some general syntax rules for the Arduino.

 Statements must end in a semicolon;
 The semicolon let’s the microprocessor know where the end

of the statement is.

 Things that are grouped together are grouped with “curly
brackets”: { } (examples to follow)

 Multiplication is performed with the asterisk: *

 Division is performed with the forward slash: /

Syntax

Comments are an organizational tool that programmers use to make
“code” legible & understandable.

It’s also a way to document what your program does and modifications
you’ve made to it.

These lines are ignored by the microcontroller and can say anything. To
let the microcontroller “know” to ignore these phrases, lines or
sentences, specific syntax is used to make a comment.

For the Arduino, the syntax is \\ anything following the \\ will turn grey
in the IDE indicating that the comment will not be read by the
microcontroller.

Comments

What information do you think you might include in the
comments of your first program?

How could you use comments to organize your first
program?

Comments

Arduino programs require two things at minimum to
run.

Setup & Loop

Notice the
comments are
grey.

1

2

The IDE will provide visual cues when the syntax is typed
correctly.

Structure statements turn GREEN:

 setup()

 loop()

Constants & data types performed on Variables turn TEAL –
and built-in functions turn ORANGE:

 int tempReading = analogRead(tempPin);

 float lightReading = analogRead (lightPin);

Syntax Cues

/*

 AnalogReadSerial

 Reads an analog input on pin 0, prints the result to the serial monitor.

 Attach the center pin of a potentiometer to pin A0, and the outside pins to +5V and

ground.

 This example code is in the public domain.

 */

// the setup routine runs once when you press reset:

void setup() {

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

}

// the loop routine runs over and over again forever:

void loop() {

 // read the input on analog pin 0:

 int sensorValue = analogRead(A0);

 // print out the value you read:

 Serial.println(sensorValue);

 delay(1); // delay in between reads for stability

}

Example Code

Just like any work you do, it’s important to
debug or check your work.

The Arduino IDE can “verify” or check the
program you wrote prior to uploading it to the
board. (Be sure to save your “sketch” first.)

If you have errors (or bugs) in your program,
they will be listed at the bottom of the screen.

The process of finding the “bugs” and
removing them is called – debugging.

Debugging

From the information listed on the bottom of your screen in the Arduino
IDE, you should be able to get an idea of WHERE in your code you have a
bug.

YourProgramName.ino: In function 'void loop()':

In this example, the error is in the loop section. Under that it will tell you
what the error is.

YourProgramName.ino:26: error: 'tempPin' was not declared in this scope

In this example, the variable tempPin wasn’t initialized properly.

Debugging

Once you have fixed the code for the
error found, you can “verify” your
“sketch” again.

When all errors are gone, the bar
under the code will say done compiling
and will stay teal.

Also the text at the bottom will be
white, not orange.

Debugging

Programming an LCD Screen

Let’s watch a YouTube video tutorial on
programming an LCD screen

 http://youtu.be/TirVG6tmTnQ

http://youtu.be/TirVG6tmTnQ
http://youtu.be/TirVG6tmTnQ

 Let’s start developing algorithms and programming a
simulated Weather Information Device.

Now, we are ready to develop a
program!

“Extra Credit” Help on RGB
Coordinates

